Problème:

Partie I

1.a 1999 est l'année ou il y eut le plus de précipitations.

1.b En 2009 il est tombé 867 \times 5 = 4335 litres

2 quantité moyenne d'eau tombée = $(1087 + 990 + ... + 841 + 867) / 11 \approx 819 \ litres$

3 Surface au sol = $13.9 \times 10 = 139$ m²

4 $V(eau) = P \times S \times 0.9 = 867 \times 139 \times 0.9 = 108461.7 \ litres \approx 108 m^3$

Partie II

1 Une personne consomme 41/115 $\approx 0.36 \approx 36\% \ d'eau$

2 Besoins en eau de pluie de 4 personnes sur un an est de $4 \times 115 \times 365 \times 60\% = 100740 \ l \approx 100 m^3$

 $3\,100m^3\,<108m^3$, l'eau récupérée en 2009 est donc suffisante

Partie III

1.a $100m^3$ coûtent 250€

1.b p(100)=250, la représentation graphique est une représentation de fonction linéaire de la forme p(x) = ax

donc $a \times 100 = 250 \ par \ conséquent \ a = 2.5 \ p(x) = 2.5x$

1.c

x	0	100
q(x)	50	300

Fonction affine q(x) = 2.5x + 50

2 Nombre d'années compensant l'achat de la citerne : $\frac{910}{250} \approx 3,64 \approx 4$ ans